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Channel flow induced by a travelling thermal wave 

By CHUEN-YEN CHOW 
Department of Aerospace Engineering Sciences 

University of Colorado, Boulder, Colorado 

(Received 3 November 1969) 

Experiments conducted elsewhere show that a mean fluid motion can be induced 
in a channel by a travelling thermal wave. An analysis is carried out, linearized 
under the assumption that the induced motion is slower than the speed of the 
heat source. The expression for the mean motion is obtained for any Prandtl 
number and circular frequency of the thermal wave, to complete the results 
presented by Davey (1967) for low and high frequency ranges. 

In  the problem of the flow between two parallel plates, it is found that with a 
temperature profile symmetric about the centre of the channel, the induced flow 
does not exert a net shear force on either plate, while with a non-symmetric 
one, the plates are subjected to equal and opposite forces. 

For the problem that the upper surface of the fluid is free and thermally 
insulated, an approximated result can be deduced from that of the previous 
problem by a simple transformation. It should agree with the result of Davey, 
obtained through a more elaborate procedure, except in the low frequency range 
when the surface deformation becomes important. 

In  agreement with the experiments, our analysis indicates that the induced 
mean motion is always in a direction opposite to that of the thermal wave, and its 
magnitude increases rapidly with decreasing Prandtl number. According to the 
theory, some of the previous experiments were not conducted under the optlimum 
situations, and improved experimental conditions are suggested. 

1. Introduction 
It was demonstrated in the laboratory that a mean motion can be produced in a 

liquid confined within an axisymmetric container by heating its bottom with a 
rotating flame. Using water as the working fluid, it was found in a cylindrical 
vessel by Fultz et al. (1959)) and in a cylindrical annulus by Stern (1959), that 
within the fluid a slow net angular motion was established in the sense opposite 
to the motion of the heat source. Schubert & Whitehead (1969) showed that the 
mean motion can be increased by decreasing the Prandtl number of the fluid 
medium. Instead of water, they used mercury filling in a cylindrical annulus and 
proved that the rate of rotation of the liquid was several times greater than that 
of the flame. They suspected that this phenomenon may provide an explanation 
for the high velocities of apparent cloud formations in the upper atmosphere of 
Venus, which have been observed in ultraviolet photographs by Smith (1967). 
Ignoring the effects of the curvature and the side walls of the cylindrical annulus, 
Stern considered a two-dimensional model with the fluid contained between two 
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horizontal plates subjected to a sinusoidal temperature wa8ve travelling along the 
channel. A linearized analysis was carried out corresponding to a special case 
where the thermal conductivity of the fluid is infinite, or the Prandtl number is 
zero. An improved model with finite Prandtl number was examined by Davey 
(1967). His work also includes a model with the fluid bounded by a plate below and 
a free surface above, used to simulate the experimental flow conditions. 

When the induced fluid motion is faster than the travelling speed of the heat 
source, as in the experiment of Schubert & Whitehead, the linearized analysis 
cannot be applied. Under the assumption of vanishing Prandtl number for a 
fluid between two plates, Schubert ( 1969) solved numerically a problem concern- 
ing the non-linear interactions of the mean flow with the fluctuations in fluid 
velocity caused by the thermal wave, while the interactions of perturbation 
quantities were neglected. 

It will be shown in $ 2  that a thermal wave of wave-number k causes a fluid 
motion consisting of waves of wave-numbers mk, m being any positive integer. 
When the fluid speed is comparable to  the flame speed, the mean flow and the 
flows of different wave-numbers are of the same order of magnitude, and their 
mutual interactions cannot be neglected. I n  fact, Schubert’s formulation is valid 
only when the fluid motion is small compared to the flame speed, while a small 
effect from the interaction between the mean flow and the flow of wave-number 
Ic is included. 

The assumption of zero Prandtl number by Stern & Schubert is non-realistic. 
We will show in $5 that Stern’s solution does not converge a t  low rotational 
speeds of the thermal source. 

Davey’s analysis is correct. However, his results were presented only for the 
limiting cases in which the frequency of flame rotation was either very low or very 
high. The purpose of the present work is to fill in this gap, within which the fluid 
speed is much greater and reaches a maximum, and to show the change in mean 
velocity profile as the frequency increases. Furthermore, the effect of thermal 
boundary conditions on the flow and shear stress will be examined. It was found 
in the previous analyses that the induced fluid motion does not exert a net shear 
force on either plate when the fluid is bounded by two parallel plates. We will 
show that this is the result of the assumed thermal boundary conditions. An 
example will be given showing that their conclusion is not true in general. 

2. A linearized analysis 
Similar to the previous analytical works, the cylindrical annulus of large mean 

radius is approximated by a two-dimensional channel of depth h supported 
below by a horizontal plate. The upper surface can either be a flat plate or the 
free surface of a liquid filling the channel. The x axis is taken to be horizontal a t  
the mid-depth of the fluid and the z axis is taken as the upward normal to the 
bottom plate. We consider a temperature fluctuation T‘ of wave form eilc(z+Ut) 

t,ravelling in the negative x direction with uniform speed U. The mean pressure, 
density and temperature of the originally stationary fluid are po,  po and To, 
respectively. The temperature perturbation causes fluctuations in pressure, 
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density, horizontal and vertical velocities which are denoted respectively by 
p',  p', u', and w'. The mean fluid motion at any height is evaluated by extracting 
the mean part of u' over one wavelength on that level. The average mean velocity 
of the fluid, V ,  is defined as the average value of the mean motion across any 
section of the channel. The kinematic viscosity and the thermometric con- 
ductivity of the fluid are v and K ,  respectively, and are assumed to be constant. 

The governing equations can be non-dimensionalized by introducing the 
following dimensionless variables : 

(1) 1 g = Icx, g =  xlh, 7 = kUt,  

p = p'/pogh, T = T'IAT, u = u' /U,  w = w'/IchU, 

where g is the gravitational acceleration and AT is the amplitude of the tempera- 
ture wave, or the difference between the flame and the mean fluid temperatures. 
The amplitude of the density fluctuation will be denoted by Ap. By using the 
Boussinesq approximation and by assuming that the channel depth is much less 
than the mean radius of the annulus, or Ich < 1, we obtain the simplified con- 
tinuity and Navier-Stokes equations: 

and 

a% aw -+- = 0, at a!: 

The dimensionless parameter A = gh/ U2  is the inverse of a Proude number, and 
R, = kh. Uhlv is a Reynolds number, both based on the speed of the heat source. 
Equation (4) states that in a shallow channel the perturbed pressure distribution 
is determined alone by the perturbation in hydrostatic pressure, resulting from 
the density variation caused by the travelling thermal wave. Equation (3) 
indicates that this pressure fluctuation, also in the form of a travelling sinusoidal 
wave, is the driving mechanism of the fluid motion. 

With the further assumption that heat is transferred primarily by conduction, 
and heat convection and dissipation can be neglected, the energy equation is 
simplified to aT -- a2T Q- = 0. 

a g 2  a7 

Q = wh2/K is a non-dimensionalized frequency where w = IcU is the circular 
frequency of the rotating heat source. It relates to the Reynolds number 
through the equation i2 = PR,, where P = V / K  is the Prandtl number. 

By inspecting (3) and (4), it is clear that a thermal wave of the form 

T = a[Tl(<) ei(t+7)] (6) 

will produce a fluid motion with components 
m 

and 
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where 2 is used to denote the real part of a complex function, 4 will be used later 
to denote the imaginary part. To obtain a solution for the motion, one has to 
solve a set of non-linear equations. However, if we assume that the induced fluid 
motion is slower than the speed of the heat source, u and w are quantities less 
than unity and the equation (3) can be linearized. By substituting (6), (7) and 
(8) together with 

a, 

p = B?[ppn (5)  eim(c+r) 1 
m= 1 

into (2)-(5)  and grouping terms of the same orders, we obtain: 

and 

(9) 

(13) 

114) 

where a tilde denotes the complex conjugate. Equation (12) shows that uo is 
generated by the Reynolds stress, and is one order smaller than u1 or wl. The 
order of magnitude of u2 (or w2) is comparable to that of uo. Because they are not 
as interesting as the mean motion to us, they are ignored in the present analysis 
together with the other smaller quantities. 

The general solution of (14) has the form 

Tl = a, cosh hg + a2 sinh AS, (15) 

where h = (ifin)+. When the boundary conditions Tl = 1 a t  c = -t & are chosen, the 
constants have the values 

1 
cosh +A’ a, = ~ a2 = 0. 

This is the case considered by Davey (1967) in his closed problem. Physically it 
corresponds to the situation that the upper and lower plates are heated by two 
alignedidentical heat sources, moving in the same direction and a t  the same speed. 

Boundary conditions closer to those in the experiments mentioned in 9 1 were 
used by Davey in his open problem. They are !li = 1 a t  5 = -3 and dT,/d< = 0 
a t  p = &, corresponding to a heated lower plate and an insulated upper surface, 
which give the result 

The effect of thermal boundary conditions on fluid motion will be studied in the 
following section. 
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By use of (E),  the solutions of (13), (11) and (10) are 

and 

a,sinhhg+a,coshAI;+- 
P - 1  

where a = (iR$ 
and $([) = f(~coshhb+-?sinhhI;+2coshaI;+”sinha5-cl[+c4). a C C (21) 

h a a 

Substituting (19) and (20) into (12) and using (lo), we obtain 

u -  O - 2P(P-  A2 1)2 ( ““)2 po .( 1 4  g a<+ cg g + c.) . 

The six constants, c,, are to be determined by the boundary conditions for the 
flow field. By the definition of average mean velocity, we have 

3. Fluid bounded by two parallel plates 

the values 
In this case the boundary conditions are 4 = dq5/dc = 0 at 5 = f 4, which give 

(24) c, = a2 cosh $A + c3 cosh +a, 

sinh Qh 
c --al- 
- sinh *a’ 

cosh Qh - 2h-1 sinh $A 
c3 = - 

a2 cosh +a - 2a-1 sinh +a ’ 

( 2 5 )  

and c4 = - a,h-l cosh $A - c2a-l cosh Qa. (27) 

Two sets of thermal boundary conditions are considered: (i) Assuming both 
plates are traversed by identical heat sources, the expressions (16) are used for 
a, and az. In  this case our w, in (20) reduces to that obtained by Davey except a 
sign difference, resulting from a missing negative sign on the right-hand side of 
Davey’s equation (14). However, this error did not appear in his expression for 
the mean velocity obtained from the product of w1 and dzZ,/dg. 

Upon substitution of (16) into (24)-(27) and then into (21), 4 becomes an even 
function in I;, and so does the integral in ( 2 2 ) .  Applying the boundary conditions 
that uo = 0 at 6 = k Q, we obtain 

c5 = 0 ( 2 8 )  

and (29) 
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The mean flow therefore does not exert shear stresses on the plates, because 
$d6/dc vanishes there and c5 = 0. This is true in general if the temperature is an 
even function in 6, i.e. if it is symmetric about the centre of the channel. The same 
conclusion was reached by Stern, when considering a temperature profile uni- 
form across the channel. 

(ii) If the upper surface is replaced by an insulated plate, the expressions (17) 
are used for a, and a2. The temperature profile and therefore the function q5 are 
no longer symmetric about the centre of the channel, and c5 becomes finite after 
applying the boundary conditions for u,,. I n  this case (22) shows that the shear 
stresses exerted by the mean flow on the upper and lower plates are opposite to 
each other and have the same magnitude proportional to cg. Considering the 
plates as one unit, the net shear force on the whole system is still zero. 

P 

FIGURE 1. The variation of average mean velocity with Prandtl number for some values 
of a. -, identical conditions on both plates; - - -, upper plate insulated. 

The general form of the average mean velocity is found to be a strong function 
of F’randtl number. Their relationship is plotted in figure 1 for fixed values of s1 
under different thermal boundary conditions. It shows that the average velocity 
increases rapidly with decreasing Prandtl number, and the velocity in a channel 
with an insulated plate is always slower than that with two heated plates, when 
the other variables are the same. 

The average mean velocity is plotted against s1 in figure 2 for different fluid 
media. We use the approximated values P = 0.04 for mercury, 0.7 for air, and 
7 for water (Landau & Lifshitz 1969). If the thermal boundary conditions are 
specified, for each fluid there exists an optimum s1 a t  which the average flow speed 
reaches a maximum. The average fluid motion is found to  be always in a direction 
opposite to the motion of the heat source. 

The mean velocity profiles in mercury a t  0 = 1,10,100 and 1000 are shown in 
figure 3. The profiles are symmetric about 5 = 0 when both plates are heated. 
In the case of an insulated upper plate, the flow near the bottom becomes reversed 
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and moves with the travelling heat source. The profiles are inverted if the upper 
plate is heated and the lower one insulated, from the fact that u,, is not affected 
by the sign of g. At lower frequencies the peaks of the non-symmetric profiles are 

0.2 

0.1 

-0.1 
-0.2 

5 0  

A 

- \\ 

- 0.002\\ 04304 0.006 
I \  I 

\ 
\ 
\ 

- 
\ - \ 

O10-1 100 101 
L2 

P 

FIGURE 2. The variation of average mean velocity with frequency L2 for mercury, air and 
water. -, identical conditions on both plates; - - -, upper plate insulated. 
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FIGURE 3. The mean velocity profiles in mercury. -, identical conditions on both plates; 
- - -, upper plate insulated. (a) L2 = 1, ( b )  R = 10, (c )  L2 = 100, (d) L2 = 1000. 
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on the side of the insulated plate, and move toward the other side at higher 
frequencies. At Q = 1000, or Re = 25,000 for mercury, the flows are ofboundary- 
layer type. At this high frequency, it is interesting to  note that, in the symmetric 
velocity profile, the maximum does not occur a t  the centre as in the low-frequency 
cases. 

4. Fluid bounded by a plate and a free surface 
Pultz et a,l. and Stern used water in their experiments, with the upper surface 

exposed to the atmosphere. I n  the experiment of Schubert &Whitehead, mercury 
was used and was covered with a layer of water. I n  all cases the fluid above was 
much lighter than that below, and the working fluid can be regarded as contained 
between a horizontal plate and an upper free surface. 

P 

FIGURE 4. With an undeformed upper free surface, the variation of average mean velocity 
with Prandtl number for somc values of SZ. 

The thermal boundary conditions were discussed by Davey; they can be 
approximated by the conditions that the plate is traversed by the heat source and 
the free surface is thermally insulated. If we assume that the deformation of the 
free surface is very small and can be neglected, the boundary conditions are 
TI = 1 a t  5 = -Q aiiddT,/d<= Oat < =  4. 

The velocity boundary conditioiis a t  the plate are $ = d$/d{ = 0 at  { = - Q, 
and those a t  the free surface are $ = d2$/dC2 = 0 at < = +, obtained from the 
requirement of zero stress and by neglecting the surface deformation there. 

This problem is equivalent to one considering only the lower half of the fluid 
contained between two parallel plates traversed by two identical heat sources. 
The conditions a t  the horizontal surface through the centre of the channel are 
exactly the same as those a t  an undeformed free surface. The solutions for tem- 
perature and velocities for the present problem are deduced immediately, by 
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replacing the channel height with 2 h, from the solutions obtained in the previous 
section for the case of a symmetric temperature profile. The results are then 
expressed in a co-ordinate system with the origin shifted to the free surface. 

" lo-' I00 1 01 1oZ 
a 

FIGURE 5. With an undeformed upper free surface, the variation of average mean velocity 
with i2 for mercury, air and water. 
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FIGURE 6. With an undeformed upper free surface, the mean velocity profiles in mercury 

at  C2 = 1, 10, 100 and 1000. 

The average mean velocity of the fluid is plotted against Prandtl number in 
figure 4 for a = 1, 5 and 20. In comparison with figure 1, it shows that this 
velocity is one order greater than the value computed for a rigid upper surface. 
Figure 5 shows the variation of average mean velocity with circular frequency, 
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plotted for mercury, air and water. (The solution for air in a channel with a free 
surface is non-realistic. It is included here for the purpose of comparison with the 
corresponding curves in figure 2.) When replacing the upper plate by a free 
surface, the maximum average mean velocity not only is increased by three 
orders, but also occurs at a lower frequency. 

The mean velocity profiles in mercury at i2 = 1, 10, 100 and 1000 are shown in 
figure 6. The boundary-layer nature shows again in the flow at high circular 
frequencies. Shear stress due to the mean flow is zero at  both the plate and the 
free surface. 

5. Comparison with previous results 
Our analysis shows that the average fluid motion is always in the sense opposite 

to the motion of tho heat source, and its magnitude increases rapidly with 
decreasing Prandtl number, which agrees qualitatively with the conclusion 

FIGURE 7 .  The variation of average mean velocity with Reynolds number, based upon 
Stern’s solution for a vanishing Prandtl number. 

based upon the observations in water (Fultz et al. 1959, Stern 1959) and in 
mercury (Schubert & Whitehead 1969). Our solid i2 = 1 curve in figure 1 is 
similar to that obtained by Schubert & Whitehead through numerical integra- 
tion of the equations. 

Stern’s solution for a fluid with infinite thermal conductivity indicated, how- 
ever, that the average flow would move with the flame at low circular frequencies. 
To examine that solution in detail, the average mean velocity is computed, 
based upon his expression for the Reynolds stress, and is plotted in our notation 
as a function of Reynolds number in figure 7. This function becomes negative 
when Re is approximately below 68, which was correctly estimated by Stern. 
From the fact that V does not converge for decreasing Re, Stern’s solution for 
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P = 0 may be regarded as rather non-realistic. Re-examination of the asymptotic 
expression for V at low Re reveals that its absolute value is proportional to R;’ 
instead of Re as obtained by Stern. 

In  the problem concerning a fluid contained between two plates with symmetric 
temperature profiles, our solution in $3  is equivalent to that obtained by Davey. 
But Davey did not show the velocity profiles, and presented only expressions 
for average mean velocity in the large and small frequency ranges. Fluid speeds in 
these ranges are very small compared to the maximum value, as can be seen in 
figure 2, and are relatively unimportant. 

In  his open problem, Davey used the boundary conditions at the free surface 

d24 (expressed in our notation) 
p = O  

and 

If A > 1 and the frequency is not too low so that la2Al > 1, which are the con- 
ditions in all the experiments performed, (31) reduces to q5 = 0. In  this case, 
Davey’s conditions are the same as those used in our 3 4 for an undeformed free 
surface. The curves shown in figure 5 are in good approximation except their 
lower frequency parts, which would become negative according to Davey’s 
solution. 

In the experiments performed by Fultz et al. (1959) and Stern (1959), i2 ranges 
from 1100 to 9900 (see Davey’s table 1). It is much too high compared to 2.5, the 
optimum value for water a t  which theaverage velocity is maximum, as indicated 
by figure 5. The value of SZ in Schubert & Whitehead’s experiment with mercury 
is about 0.5, which is close to 0.35, the optimum value according to our linearized 
theory. In  their experiment fluid speed was faster than the flame speed, the 
optimum value of Q actually should be determined from a non-linear analysis. 
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